Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38625462

RESUMO

Inorganic chlorine is susceptible to water and soil salinization due to its non-degradability and high mobility. To clarify the environmental risks associated with the active inorganic chlorine in municipal solid waste (MSW), the specific characteristics and contributions of inorganic chlorine in different MSW categories were investigated in this study. MSW samples were collected from eight representative waste classification residential areas in Hangzhou, China. It was found that the inorganic chlorine content in different MSW categories varied significantly (0-113 mg/g). Perishable waste, paper, and plastic were found to be the main sources of inorganic chlorine in MSW. A four-category classification system was used to quantify the contribution of inorganic chlorine from each waste category. It was found that the misclassification of inorganic chlorine contributions from perishable waste and other waste accounted for 51.96% and 48.04%, respectively. However, when correctly classified into the four-category system, their contributions were reduced to 67.14% and 30.65%, respectively. Therefore, MSW classification showed a significant reduction in the overall contribution of inorganic chlorine. The misclassification reduces the contribution of inorganic chlorine to 48.04%, while correct classification increases the reduction to 69.35%.

2.
J Environ Manage ; 351: 119730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086123

RESUMO

In this study, the behavior of heavy metal transformation during the co-thermal treatment of hazardous waste incineration fly ash (HWIFA) and Fe-containing hazardous waste (including hazardous waste incineration bottom slag (HWIBS) and electroplating sludge (ES)) was investigated. The findings demonstrated that such a treatment effectively reduced the static leaching toxicity of Cr and Pb. Moreover, when the treatment temperature exceeded 1000 °C, the co-thermal treated sample exhibited low concentrations of dynamically leached Cr, Pb, and Zn, indicating that these heavy metals were successful detoxified. Thermodynamic analyses and phase transformation results suggested that the formation of spinel and the gradual disappearance of chromium dioxide in the presence of Fe-containing hazardous wastes contributed to the solidification of chromium. Additionally, the efficient detoxification of Pb and Zn was attributed to their volatilization and entry into the liquid phase during the co-thermal treatment process. Therefore, this study sets an excellent example of the co-thermal treatment of hazardous wastes and the control of heavy metal pollution during the treatment process.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Eliminação de Resíduos/métodos , Esgotos/análise , Resíduos Perigosos/análise , Galvanoplastia , Chumbo , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos/análise , Carbono , Material Particulado/análise
3.
J Environ Manage ; 338: 117776, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965423

RESUMO

Based on the CaO-SiO2-Al2O3 system, the feasibility of co-vitrification of hazardous waste incineration fly ash (FA) and hazardous waste sludge (HWS) was verified. In the CaO-SiO2-Al2O3 ternary system diagram, the melting point of the system gradually decreases with an appropriate increase in SiO2 content when the CaO/Al2O3 ratio is determined to be approximately 1. The TG-DSC results revealed that the liquid phase generation temperature in the FA and HWS mixture system was significantly lower than those of FA and HWS individually owing to the different CaO, SiO2, and Al2O3 contents; this is consistent with the results of the theoretical melting characteristics analysis, which show that the melting characteristic temperatures can be reduced by controlling the CaO-SiO2-Al2O3 ratio in the system. The co-vitrification experimental results confirmed that a vitreous content above 92%, a loss ratio on acid dissolution less than 1.74%, and leaching toxicity of heavy metals lower than 0.15 mg/L could be obtained by adjusting the CaO, SiO2, and Al2O3 contents in the FA and HWS system to 20 wt%-32.5 wt%, 35 wt%-61 wt% and 14 wt%-32.5 wt%, respectively, and under a melting temperature of 1350 °C.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Incineração , Dióxido de Silício , Esgotos , Vitrificação , Metais Pesados/análise , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Carbono , Resíduos Perigosos , Material Particulado/análise
4.
Environ Sci Pollut Res Int ; 30(12): 33877-33885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36502480

RESUMO

This study investigated the influence of the interaction between Fe-based substances and thermal treatment parameters on the leaching behavior of Cr in hazardous waste incineration fly ash (HWIFA) after thermal treatment. The results revealed that the interaction between the addition of Fe-based substance and the thermal treatment parameters and their effects on static and dynamic leaching behaviors of Cr had significant differences when Fe2O3, Fe3O4, and Fe were added, respectively. Specifically, when Fe2O3 or Fe was added, the thermal treatment temperature was the most significant factor affecting the static leaching of Cr in thermal treated HWIFA, and the interaction effect of other factors was not significant. The most important influence on the dynamic leaching behavior of Cr was the interaction between the thermal treatment temperature and the addition of Fe2O3. Different from the addition of Fe2O3, the effect of the addition of Fe3O4 on the static leaching of Cr in thermal treated HWIFA was more significant than that of thermal treatment temperature; meanwhile, the interaction between the thermal treatment temperature and the addition of Fe3O4 was also significant. However, when Fe3O4 was added, the effect of interaction between factors on the dynamic leaching of Cr in thermal treated HWIFA was consistent with that when Fe2O3 was added.


Assuntos
Metais Pesados , Eliminação de Resíduos , Incineração , Cinza de Carvão/análise , Metais Pesados/análise , Resíduos Perigosos , Temperatura , Resíduos Sólidos/análise , Carbono , Material Particulado
5.
Waste Manag ; 153: 304-311, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179549

RESUMO

This study investigated the leaching behavior of Pb in hazardous waste incineration fly ash (HWIFA) after adding Fe2O3 thermal treatment and revealed the leaching mechanism of Pb from the perspective of phase transformation. The static leaching results showed that at 600 °C-1300 °C, with the addition of Fe2O3 increased, the Pb leaching toxicity continued to decrease. The dynamic results indicated that as the thermal treatment temperature was higher than 1100 °C, the addition of Fe2O3 can effectively inhibit the dynamic leaching of Pb in HWIFA. Meanwhile, the inhibition effect was not very closely related to the amount of Fe2O3. The addition of Fe2O3 can react with PbO to form PbFe12O19, which has a better stability. The appearance of PbFe12O19 was the main reason for adding Fe2O3 to enhanced the immobilization of Pb. However, the amount of Fe2O3 should be carefully controlled to avoid an excessive reducible fraction of Pb in the thermal treated HWIFA, which will affect the long-term stability of Pb.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão/análise , Resíduos Perigosos , Incineração/métodos , Chumbo , Metais Pesados/análise , Material Particulado , Resíduos Sólidos/análise
6.
J Environ Manage ; 317: 115475, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35662047

RESUMO

Thermal treatment technology considerably affects the harmlessness of fly ash (FA), but highly toxic heavy metals, such as Cr, attract considerable attention. In this study, we investigated the influence of CaO dosage at 600°C-1200 °C on the curing effect of Cr during FA thermal treatment based on the combination effect of CaO. Static, dynamic, and continuous sequential leachings were performed for the sintered products. Results showed that the leaching concentration of Cr decreased by approximately 91% when CaO dosage was 8.57%, and the difference in the residual state was the main reason for the difference in the leaching behavior of Cr. The proportion of the residual state in the sintered products increased from 35.16% to 64.01%. The transition between Cr2O3, Cr5O12, and CaCr2O4 is the fundamental reason for the leaching behavior of Cr and the change in the residual state. This study provides a scientific basis for preventing and controlling heavy metal pollution and optimizing environmental supervision in the FA thermal treatment process.


Assuntos
Metais Pesados , Eliminação de Resíduos , Compostos de Cálcio , Carbono , Cromo , Cinza de Carvão/análise , Resíduos Perigosos , Incineração , Metais Pesados/análise , Óxidos , Material Particulado , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise
7.
ACS Omega ; 4(14): 16062-16067, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592174

RESUMO

The feasibility of recovering magnesium from ferronickel slag by vacuum reduction was evaluated. The thermodynamic calculations indicated that the magnesia in slag can be reduced to gaseous magnesium by Si, FeSi, Al, and C, with the minimum reduction temperatures of 2324, 2530, 1678, and 2580 K at 100 000 Pa, respectively. As the system pressure decreases, the minimum reduction temperatures decline significantly. Si maintains the minimum reduction temperature of 1585-1673 K at the atmospheric pressure of 10-100 Pa, acting as a suitable reducing agent for recovering magnesium. To verify the findings, preliminary vacuum reduction experiments, in which CaO was added to eliminate the adverse impact of SiO2 in slag, were carried out. By reducing slag with additions of 50 wt % Si and 30 wt % CaO at 1573 K for 3 h at 10 Pa, the recovery of magnesium reached 97.74%.

8.
J Hazard Mater ; 374: 83-91, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30981016

RESUMO

Chromium was selectively recovered from ferronickel slag by roasting the slag with addition of Na2O2, followed by water leaching. The thermodynamic analysis revealed that in the presence of Na2O2 at appropriate temperatures, the Cr2O3 in the ferronickel slag can be converted to NaCrO2, instead of Na2CrO4, which prevents the formation of highly toxic Cr (VI). The experimental results confirmed that under the optimal alkaline roasting and water leaching conditions of the mass ratio of ferronickel slag to Na2O2 of 1, roasting temperature of 600 °C, roasting time of 1 h, leaching temperature of 50 °C, leaching time of 1 h, and liquid-to-solid ratio of 10 mL/g, 92.33% of Cr was leached with 64.28% of Na and 11.16% of Si and only 0.06 wt % Cr was left in the leaching residue. The high leaching percentage of Cr was a result of the transformation of Cr2O3 in the ferronickel slag to NaCrO2 with a loose structure during alkaline roasting that was beneficial to water dissolution. Compared to the traditional alkaline roasting process, the proposed more environmentally friendly method did not produce toxic Cr (VI) during recovery of chromium and the resulting residue has potential to be used as a good construction material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...